Homework 3—Extend a Cognitive Tutor
05-432/05-832 Personalized Online Learning, Spring 2017
Due: Thu, Feb 16, 11:59pm (via Blackboard)
Maximum points: 70

The purpose of this assignment is to learn to write Jess code and to gain experience with the CTAT tools for rule-based cognitive modeling and model tracing, namely, the Jess Console, Working Memory Editor, Conflict Tree and the Why Not? tool. You will also gain experience with a specific issue regarding production rules, namely, that the same rule(s) can be re-used within a given problem, on different steps.
You are asked to extend a small Cognitive Tutor. The first part of the job is to complete a partially-written tutor for the strategy of squaring numbers that end in 5.[footnoteRef:0] The second part of the job is to extend this tutor so it can handle taking the fourth power of a number that ends in 5, by going through the same steps twice. [0: Kelly, G. W. (1984). Short-cut math. New York: Dover Publications.]

The following resources will be available on Blackboard:
· Tutor interfaces for the two tutor versions. Note: you can run these .html files in your browser. (Definitely feel free to improve these interfaces, although you should not change the CTATComponents or their instance names.)
· Behavior graphs for each tutor.
· Working memory for the first tutor (squaring numbers that end in 5)
· Two production rules for the first tutor.
· A Jess template file for the second tutor.

⇒ This homework requires a lot of hands-on learning. Please start well in advance of the due date.

Preparation: Do the on-line CTAT cognitive modeling tutorial
For production rule editing, it is recommended that you use Eclipse with the Jess plug-in. This plug-in is packaged in the CTAT installer. See the download instructions at http://ctat.pact.cs.cmu.edu/index.php?id=download and the configuration instructions at http://ctat.pact.cs.cmu.edu/index.php?id=eclipse32

Please note: The plugin does work with Eclipse Luna, but requires an extra step to install. You may prefer to use Eclipse Kepler.
It is highly recommended that you work through an online tutorial that introduces the CTAT tools for developing Jess production rule models. The tutorial is available at http://ctat.pact.cs.cmu.edu/tutorials/2.11/javacognitive. This tutorial was written for an older version of CTAT, but hopefully that will not be a problem.

If you have Eclipse but not the Jess plug-in for Eclipse (e.g., if you installed Eclipse after you installed CTAT), you can run the application called PluginInstaller, which you can find in your main CTAT directory. You can tell that the plug-in is working when there is color coding of Jess code within the Eclipse editor.

Part 1: Complete a partially-complete rule-based tutor
In Part 1 your task is to extend a partially-complete rule-based tutor for the square5 strategy. The tutor should work for any whole number ending in 5 (e.g., 15, 105, 2935 but not 0.25 or 3.5). The strategy (e.g., to take the square of 35) is to drop the five (gives 3), add one (gives 4), multiply the two numbers (gives 12), and append 25 (gives 1225).
[image:]
Add rules modeling correct behavior
The partial model downloaded from Blackboard contains two rules – add four more rules for the remaining three steps in the problem and for the done step. It is fine to have one rule per step and have an ordered tutor. The done action should be accepted only when the problem is done. You are encouraged to make use of the English versions of the production rules given in the slides. There is no need to modify the templates that are provided.

Add hints
Write some good multi-level hints and attach hint templates to each of the rules.

Add a bug rule
Hypothesize a particular error that students might make as they work with this tutor. Create a bug rule that recognizes the error and provides feedback. (This will be the fifth rule you need to hand in.)

Create a new problem
Add a new problem. This means you need to create (1) a behavior graph with only a start state (no need to record the steps of the problem in a graph) and (2) a new file with the initial working memory configuration (a .wme file). This is typical for rule-based tutors created with CTAT: each problem requires a behavior graph with only a start state (no paths needed) and a file with the initial Jess facts.

In your report include: Three screen shots of your tutor, each with an extended caption, documenting that your tutor addresses each of the requirements listed above.

Part 2: Extend the tutor so it can handle a new problem type
In Part 2, your task is to extend the tutor so that it can handle a new problem type, namely, taking the fourth power of numbers that end in 5. This means going through the same process twice. A tutor interface is provided so you can focus on creating a production rule model. The main point of this exercise is to write a few more rules and to see how the same rules can be re-used within a given problem, even if the interface elements used are different the second time around. This means however that you cannot hardcode the name of the interface elements into your rules.
For example, 254 = (252)2 can be determined by twice applying the shortcut strategy for squaring a number ending in 5. For an example, see the behavior graph that comes as part of the resources for this homework.
The idea is that your new production rule model includes and extends the model you made in Part 1. As much as possible, re-use what you have, modified as needed. For example, re-use the rules for the Square5 tutors with very minimal changes. Your changes to the working memory structure should be minimal as well.

Use the new set of working memory templates
You are given a new set of templates for your modified tutor. The problem fact has changed! It has two new slots, the type slot and the sub-problems multislot.
[image:]
Create new problem, including initial state of working memory
Create a new problem. You need to create both a behavior graph (needs to have no more than a start state) and an initial working memory file (.wme file) for an example problem. The idea is that working memory has three problem facts, one for the overall problem of taking the fourth power of a number ending in 5 (set the type to 4thpower5) and two for the two “sub problems” (or subgoals) of squaring a number ending in 5 (set the type to square5). You need to link the two sub problems to the top-level problem by inserting the two problems of type square5 into the slot sub-problems of the top-level problem.

[bookmark: _gjdgxs]You will also need create additional interface element facts in working memory and link them to the appropriate problem fact. Hint: You will want 1-to-1 correspondence between the interface element facts in working memory and the given interface (as is the case in part 1). Given there is no final answer interface element for the first sub problem, you need to make sure you only have such an interface element for the second sub problem.

Implement and test rules
Your rules for squaring a number ending in 5 will require minimal modification. One change that may be useful is that you restrict these rules to problems whose type equals square5 by adding to the condition part.

You probably will need a few new production rules. For example, you may need a new rule that copies the append-25 value from the first subproblem to the given-number slot of the second subproblem, once this value has been determined. It will be helpful if you sketch out your new production rules in English before you start writing them in Jess. You may want to use the rules given in English in the lecture slides as examples.

As before, it is fine to have one rule per step and have an ordered tutor. And as always, the done action should be accepted only when the problem is done.

Please note: Your model should only have one set of rules for squaring a number ending in 5. There should be no duplication of these rules.

A good strategy is to write English versions of your rules first.

When you implement your rules in Jess, please provide ample commentary in your rules file. You are not asked to add a bug rule, but please provide hints for the new rules so that the tutor is capable of giving hints on each step.

In your report include: Three screenshots of your tutor, each with an extended caption, showing that it addresses the requirements above.

Deliverables (Please submit a single .zip file through BlackBoard):
· A short report that includes:
· For Part 1
· Three screenshots with extended captions, as described above
· A brief description of what was hardest.
· For Part 2
· Three screenshots with extended captions, similar as for Part 1
· A brief description of what was hardest
· Comments on CTAT: what tool features were helpful, what tool features were missing or in need of improvement?
· Your newly-created or modified tutor files for Part 1
· Please include all tutor files (behavior graphs, Jess templates, Jess production rules, Jess initial state files)
· This model should have four new rules plus a bug rule. The rules should have hints attached. You should also hand in a new problem.
· Your newly-created or modified tutor files for Part 2
· Please include all tutor files (behavior graphs, Jess templates, Jess production rules, Jess initial state files)
· The model should not have duplicate rules for the steps of computing the square of a number ending in 5.

Helpful hints

· What files make up a rule-based tutor? For any given problem type, you will typically have
· A tutor interface, either in Flash or in Java (e.g., when working in Flash, you would have a .fla and a .swf file)
· Cognitive model files
· One file with Jess Templates: this file is always called wmeTypes.clp
· One file with your Jess production rules: this file is always called productionRules.pr
· Problem files; for each problem you will have
· Behavior graph (.brd) with only a start state (this is needed to show the start state in the interface)
· Initial working memory configuration for the given problem (.wme file)
· The .brd and .wme files for a given problem should have the same name
· Keep this set of files in a single folder.

Edit-test-debug workflow – As in other forms of programming, when creating a cognitive model, you will go through cycles in which you edit your model, test if it works as intended, and, if not, debug the model. A good strategy is to cycle through the steps listed below, though over time you may want to develop your own workflow.
EDIT
· Edit Jess files in Eclipse, with the Jess plugin
· Save all changes

TEST
· Go to CTAT
· Make sure CTAT is in Jess tutor mode and in Test Tutor mode
· Make sure the right behavior graph is open and the interface is connected to this behavior graph
· Reload the model by going to the start state, either by clicking on the start state or by using the keyboard shortcut ctrl-1 or cmd-1.
· Check that the model was loaded correctly
· Look at the Jess Console – CTAT will tell you which files it loaded and if there were errors. You should see that three files were loaded: templates, production rules, and initial state file; looks like this:

Reading wmeTypes.clp (/….. /wmeTypes.clp)
Reading productionRules.pr (/…. /productionRules.pr)
Reading 4th25.wme (/… /4th25.wme)

· Any additional output in the Jess Console is usually a sign of trouble. When in doubt, click “Clear Window” in the Jess Console, and re-load the model (by going to the start state).
· The Working Memory Editor tells you were CTAT is looking for the cognitive model files – where it says “Cognitive Model Folder: ___” A tooltip will give you the full pathname when you hover over “Cognitive Model Folder: ___”.
· Check if working memory is as expected, using the Working Memory Editor.
· For example, to see your problem fact: ctrl-P or cmd-P.
· To follow fact cross references, for example, to see a fact listed within a slot of another fact, ctrl-click or r-click on that fact (e.g., ctrl-click or r-click “<Fact-9>”).
· Test steps in the model, in one of the following ways
· Enter the step in the student interface
· Click on a state in the behavior graph to jump to that state
· “walk down” your behavior graph using the “Next Preferred Step” command (alt-downarrow).
· For each step, check that all is well
· If CTAT pops up an error message, then that message will require your attention
· Does the tutor “behave” as expected (e.g., give the expected feedback in the tutor interface)?
· Are any errors signaled in the Jess console? When, on a given problem step, your tutor does not do what you expected it to do, a good place to look is the Jess Console.
· Does the Conflict Tree show what you expected to see?
· If all is fine, congratulations!

DEBUG
· If the tutor behaves erroneously (e.g., if it does not accept valid student input), and assuming no errors were signaled in the Jess Console or in pop-up messages, use the Conflict Tree as your first diagnosis tool.
· Perhaps the right rule fired but it produced the wrong observable action. Click in the left column of the Conflict Tree to see a comparison of student input and model-generated observable action.
· Perhaps a rule you expected to fire did not fire. If so, use the Why Not? Tool. Click on the Chain node in the Conflict Tree under which you expected to see the rule. Select the rule and inspect the output in the Why Not? window.
· As part of this process (but usually after you do the previous), you may use the Working Memory Editor to check whether working memory is as intended.

Using the Jess Console interactively -- As part of your edit-test-debug cycles, you may occasionally find it helpful to interact directly with your Jess model, by typing commands into the Jess Console. The commands are detailed in the Jess book, but here is a sample:
(facts) – list the contents of working memory
(rules) – list the rules
(agenda) – list the contents of the agenda
(watch rules) – turn on the tracing of rule firings
(watch facts) – turn on the tracing of changes to working memory
(unwatch) – turn off tracing (note: going to the start state will also turn off tracing)
(run) – run the model (completely outside of the tutor)
(run n) – run the model, stop after n rule firings
(batch file-name) – load file file-name (but an easier way to load relevant files is to go to the start state)
(reset) – clear working memory
(clear) – clear the entire production rule model (templates, facts, and rules)

image4.png
problem

name sg25
given-number 25
first-part
first-part-plus-1
product
append-25
final-answer
done

ie-first-part
ie-first-part-plus-

ie-product
ie-append-25 —_

interface-element
name firstPart
value

interface-element
name firstPartPlusOne
value

AN

interface-element
name Product
value

interface-element
name Append25
value

ie-final-answer “~—__ |

interface-element
name finalAnswer
value

image3.png
problem

name 4th25
type dthpowers
sub-problems

given-number 25
first-part
first-part-plus-1
product
append-25
final-answer
done

ie-first-part
ie-first-part-plus-1
ie-product
ie-append-25
ie-final-answer

L

problem
name 525
ype squares

interface-element
name firstPartl
value

sub-problems

given-number
first-part.

interface-element
name

firstPartPlusOnel

first-part-plus-1

product
append-25
final-answer

interface-element
name Productl
value

done /
ie-first-part

rst-part-pkr§-1

AN

interface-element
name Appendl
value

ie-product’
ie-append-25
ie-final-answer

problem
name sg625
ype squares

interface-element
name firstPart2
value

sub-problems

given-number
first-part

interface-element
name

first-part-plus-1

product
append-25
final-answer

interface-element
name Product?
value

done

ie-first-part
ie-first-part-, -1

interface-element

value

ie-product’

N

ie-append-25
ie-final-answer*™ >

interface-element
name
value

